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Upper and lower bounds for the ground state entropy of antiferromagnetic Potts models

Robert Shrock* and Shan-Ho Tsai†

Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794-3840
~Received 15 January 1997!

We derive rigorous upper and lower bounds for the ground state entropy of theq-state Potts antiferromagnet
on the honeycomb and triangular lattices. These bounds are quite restrictive, especially for largeq.
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Nonzero ground state disorder and associated entr
S0Þ0, is an important subject in statistical mechanics
physical realization is provided by ice, for whichS050.82
60.05 cal/~K mole!, i.e., S0 /kB50.4160.03 @1,2#. Ground
state~g.s.! entropy may or may not be associated with fru
tration. An early example with frustration is the Isin
~equivalently,q52 Potts! antiferromagnet on the triangula
lattice @3#. However, g.s. entropy is also exhibited in th
simpler context of models without frustration, such as
q-state Potts antiferromagnet~AF! @4–6# on the square~sq!
and honeycomb~hc! lattices for~integral! q>3 and on the
triangular ~tri! lattice for q>4. Of these three two-
dimensional~2D! lattices,S0 has been calculated exactly fo
the triangular case@7#, but, aside from the single valu
S0(sq,q53)/kB5( 32)ln(

4
3) @8#, not for the square or honey

comb lattices. Therefore, it is valuable to have rigorous
per and lower bounds on this quantity. Using a ‘‘colorin
matrix’’ method, Biggs derived such bounds for the squ
lattice @9#. Here we shall extend his method to derive ana
gous bounds for the honeycomb lattice, and compare
results with our recent Monte Carlo measurements@10,11#
and with large-q series@12#. We also derive such bounds fo
the triangular lattice; the interest in this case is that
bounds can be compared with the exact result of Baxter@7#.

We make use of the fact that the partition function atT
50, Z(L,q,K52`), for theq-state zero-field Potts AF on
a latticeL @whereK5bJ, b51/(kBT), and J,0 denotes
the spin-spin coupling# is equal to the chromatic polynomia
P(L,q). HereP(G,q) is the number of ways of coloring th
graphG with q colors such that no adjacent vertices~sites!
have the same color@13#. Define the reduced, per site fre
energy for the Potts AF in the thermodynamic limit
f (L,q,K)5 limN→`N

21ln Z(L,q,K). From the general rela
tion between the entropyS, the internal energyU, and the
reduced free energyS5bU1 f ~henceforth we use unit
such that kB51!, together with the property tha
limK→2`bU(b)50, as is true of theq-state Potts AF mod-
els considered here, it follows thatS0(L,q)5 f (L,q,K
52`)5 lnW(L,q), whereW(L,q) is the asymptotic limit

W~L,q!5 lim
N→`

P~L,q!1/N. ~1!
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Given this connection, we shall express our bounds on
g.s. entropyS0(L,q) in terms of the equivalent function
W(L,q). As we discussed earlier@11#, the formal Eq.~1! is
not, in general, adequate to defineW(L,q) because of a
noncommutativity of limits

lim
N→`

lim
q→qs

P~L,q!1/NÞ lim
q→qs

lim
N→`

P~L,q!1/N ~2!

at certain special pointsqs . We denote the definitions base
on the first and second orders of limits in Eq.~2! as
W(L,q)Dnq

andW(L,q)Dqn
, respectively. This noncommu

tativity can occur forq,qc(L), whereqc(L) denotes the
maximal ~finite! real value ofq, whereW(L,q) is nonana-
lytic @11#. Sinceqc(hc)5(31A5)/252.618..., andqc(tri)
54 @and qc(sq)53# @11#, it follows that for the ranges of
q considered here, viz.,~real! q>3 for L5hc and sq, and
q>4 for L5tri, one does not encounter the noncommu
tivity ~2!.

To proceed, we consider a sequence of~regular! m3n 2D
lattices of type L, with periodic boundary conditions
~PBC’s! in both directions, andm andn even to maintain the
bipartite property for finite square and honeycomb lattic
and thereby avoid frustration. ForL5sq, Biggs introduced
the notion of a coloring matrixT, somewhat analogous to th
transfer matrix for statistical mechanical spin models. T
construction ofT begins by considering ann-vertex circuit
Cn along a column ofL, i.e., a ring around the toroida
lattice, given the PBC’s. The number of allowedq colorings
of this circuit is P(Cn ,q)5(q21)@(q21)n211(21)n#.
Now focus on two adjacent columnar circuits,Cn andCn8 .
Define compatibleq colorings of these adjacent circuits a
colorings such that no two horizontally adjacent vertices
the circuits have the same color. One can then associate
this pair of adjacent columnar circuits anN3N-
dimensional symmetric matrixT, where N5P(Cn ,q)
5P(Cn8 ,q) with entriesTCn ,Cn85TC

n8 ,Cn
51 or 0 if the q

colorings ofCn andCn8 are or are not compatible, respe
tively. Then for fixedm,n, P(Lm3n ,q)5Tr(Tm). For a
givenn, sinceT is a non-negative matrix, one can apply th
Perron-Frobenius theorem@14# to conclude thatT has a real
positive maximal eigenvaluelmax,n(q). Hence, for fixedn,

lim
m→`

Tr~Tm!1/~mn!→lmax
1/n , ~3!

so that
6791 © 1997 The American Physical Society
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6792 55ROBERT SHROCK AND SHAN-HO TSAI
W~L,q!5 lim
n→`

lmax
1/n , ~4!

Denote the column sumk j (T)5S i51
N Ti j @equal to the row

sum r j (T)5S i51
N Tji since TT5T# and S(T)5S i , j51

N Ti j ;
note thatS(T)/N is the average row~column! sum. Combin-
ing the bounds for a general non-negativeN3N matrix A
@14#,

min$g j~A!%<lmax~A!<max$g i~A!%,

for g j5k j or r j , ~5!

with the ~k51 case of the! more restrictive lower bound
applicable to a symmetric non-negative matrix@15#,

FS~Tk!

N G1/k<lmax for k51,2,..., ~6!

we have

S~T!

N <lmax~T!<max$k j~T!%. ~7!

For the honeycomb lattice, we find that an analog of
circuit Cn on the square lattice is the set of vertical dime
shown in Fig. 1~a!, which we denote asp. With m and n
even to maintain a bipartite lattice, there aren/2 dimers in
p, and the total number ofq colorings of these dimers i
Nhc,n5@q(q21)#n/2. We next associate theT matrix
T(hcn) with two adjacent sets of dimersp andp8 @see Fig.
1~a!#; T(hcn) is thus aNhc,n3Nhc,n matrix. Twoq colorings
of the dimer setsp andp8 are compatible if and only if the
horizontally adjacent vertices have different colors, a
Tp,p851 or 0, respectively, if these colorings are compati
or incompatible. We observe thatS(T)5P(C2n ,q). There-
fore,

S„T~hcn!…

Nhc,n
5

~q21!@~q21!2n2111#

@q~q21!#n/2
. ~8!

To calculate the maximal column sum, we consider t
neighboring sets of dimersp and p8, with n sites each la-
beled byi50,1,...,n21 @see Fig. 1~a!#. Let the sites of set
p be colored in such a way that sites on the same dimer h
different colors~choosing one such configuration of colo
corresponds to fixing one column in the color matrixT!. Let
Xj denote the number ofq colorings of sitesi50 to i5 j of
p8, such that a sitei in setp has a different color from a site
i on p8. If j is odd, the coloring of thej th site inp8 is only
constrained to be different from the coloring of the adjac
j th site inp, soXj5(q21)Xj21 . @16# The color assigned to
an even-j site inp8 must be different from the color of~i! the
other member of the dimer inp8 and~ii ! the adjacentj th site
in p; hence,Xj5(q22)Xj211Yj21 , whereYj21 denotes
the number of colorings for which sitej of p has the same
color as site j21 of p8. Note thatYj21 is a subset of
Xj22 , i.e.,Yj21<Xj22 . Thus

Xj<~q22!Xj211Xj22 for even j , 2< j<n22,
~9!
e

d
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Xj5~q21!Xj21 for odd j , 1< j<n21. ~10!

Using Eq.~10! in Eq. ~9!, and settingj52l , we have

X2l<@~q21!~q22!11#X2l22 for 2<2l<n22,
~11!

which yields X2l<@(q21)(q22)11# lX0 , where
X05q21. It follows that

Xn215~q21!Xn22<~q21!2@~q21!~q22!11#~n22!/2.
~12!

Because max$kj„T(hcn)…%<Xn21 , we obtain

max$k„T~hcn!…%<~q21!2@q223q13#~n22!/2. ~13!

Hence, using Eqs.~3! and ~4!, we derive the bounds

FIG. 1. ~a! Honeycomb and~b! triangular lattices. See text fo
discussion.
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TABLE I. Comparisons of lower and upper bounds with Monte Carlo measurements ofW(hc,q) and exact values ofW(tri,q),
respectively, forqc(L)<q<10. An analogous comparison is included forL5sq. A conservative estimate of the uncertainty in the ratios
the hc and sq lattices is 331024.

q
W(hc,q) l
W(hc,q)MC

W(hc,q)u
W(hc,q)MC

W(sq,q) l
W(sq,q)

W(sq,q)u
W(sq,q)

W(tri,q) l
W(tri,q)

W(tri,q)u
W(tri,q)

3 0.983 73 1.043 40 0.974 25 1.050 91
4 0.997 81 1.016 12 0.998 44 1.033 05 0.912 62 1.1074 85
5 0.999 48 1.007 26 0.999 70 1.015 93 0.993 77 1.066 30
6 0.999 78 1.003 77 0.999 92 1.008 51 0.998 79 1.030 87
7 0.999 88 1.002 20 0.999 96 1.004 98 0.999 63 1.016 28
8 0.999 99 1.001 45 0.999 96 1.003 12 0.999 86 1.009 53
9 1.000 01 1.000 99 0.999 95 1.002 06 0.999 94 1.006 02
10 0.999 94 1.000 63 0.999 86 1.001 34 0.999 97 1.004 04
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~q21!3/2

q1/2
<W~hc,q!<~q223q13!1/2 for q>3

~14!

The bounds are also seen to apply for the caseq52 if one
uses as a definitionW(hc,2)[W(hc,2)Dnq

51 given by the
first order of limits in Eq.~2!.

Similarly, for the triangular lattice we define the colo
matrix T(trin) by considering the compatibility ofq color-
ings of two neighboringn-vertex circuitsCn andCn8 . An
example of such adjacent circuits is shown by the dar
lines in Fig. 1~b!. Here T(trin) is a Ntri,n3Ntri,n matrix,
whereNtri,n5P(Cn ,q)5P(Cn8 ,q). For the triangular lattice
with periodic or open boundary conditions in the vertic
direction, S(T) is equal, respectively, to the numbe
P(cctrin ,q) and P(octrin ,q) of q colorings of a cyclic
or open chain of triangles with 2n vertices. In the
n→` limit of interest here, limn→`P(cctrin ,q)

1/n

5 limn→`P(octrin ,q)
1/n, so it does not matter which type o

chain we use. An elementary calculation yields

P~octrin ,q!5q~q21!~q22!2n22, ~15!

so

lim
n→`

FS„T~ trin!…

Ntri,n
G1/n5~q22!2

q21
. ~16!

To calculate max$kj„T(trin)…%, we derive, as before, an
upper bound forXn21 . Each vertex ofCn8 is connected to
two vertices ofCn , hence each of theXj21 colorings of the
sitesi50 to i5 j21 of the circuitCn8 can be extended in a
least q23 ways to the sitei5 j . Thus, for the triangular
lattice, the equivalent of Eqs.~9! and ~10! is

Xj<~q23!Xj211Xj22 , 2< j<n21, ~17!

with X05q22 andX1<(q23)(q22)11 @17#. This recur-
sion relation is of the same form as the one obtained pre
ously @9# for the square lattice, and can thus be solved by
same method. Thus, for the triangular lattice, we find t
inequality
r

l

i-
e
e

~q22!2

q21
<W~ tri,q!< 1

2 @q231~q226q113!1/2#

for q>qc~ tri!54. ~18!

@For q53, the ground state entropy is zero, i.e
W(tri,3)Dnq

51.#
Denote the lower and upper bounds for these lattices

W(L,q) l andW(L,q)u , respectively. We observe that a
q increases, these bounds rapidly approach each other,
hence restrict the exact valuesW(L,q) very accurately. This
can be seen as a consequence of the fact that, aside from
obvious prefactorq, W(L,q) l andW(L,q)u are the same up
to O(q22):

q21W~hc,q! l512 3
2q

211 3
8q

221 1
16q

231O~q24!,
~19!

q21W~hc,q!u512 3
2q

211 3
8q

221 9
16q

231O~q24!,
~20!

and similarly with q21W(tri,q)b , b5 l ,u. ~This was also
true for theL5sq bounds@9#!.

In Table I, we compare the bounds~14! for L5hc with
our recent Monte Carlo measurements ofW(hc,q) @10,11#.
We also compare our bounds~18! for L5tri with the exactly
known results of Baxter@7#. For reference, Table I includes a
similar comparison of theL5sq bound with the knownq
53 value@8#, and Monte Carlo measurements@18,19,11# for
q.3. We see that asq increases pastq.4, the upper and
lower bounds bracket the actual respective values qu
closely, and that the latter values lie closer to the low
bounds.

To understand why the actual values ofW(L,q) lie closer
to the respective lower bounds, we compare the large-q se-
ries with the expansions of these lower bounds. For a latt
L with coordination numberz, the largeq series can be
written in the form

W~L,q!5q~12q21!z/2W̄~L,y!, ~21!

whereW̄(L,y)511(n51
` wny

n with y51/(q21). Defining
the analogous functionsW̄(L,y)b via

W~L,q!b5q~12q21!z/2W̄~L,y!b , b5 l ,u, ~22!
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we obtainW̄(hc,y) l51, which agrees to the first five term
i.e., to order O(y4), with the series@12# W̄(hc,y)51
1y5/22y10/81y111O(y12), while W̄(hc,y)u511y3/2
1O(y6). We also calculateW̄(tri,y) l5(12y2)2, which
agrees to the first five terms, i.e., toO(y4), with the series
@12# W̄(tri,y)5122y21y41y51O(y6), while W̄(tri,q)u
5122y212y31O(y4). Finally, W̄(sq,y) l511y3, which
agrees to the first seven terms, i.e., toO(y6), with the series
@12,19# W̄(sq,y)511y31y71O(y8), while W̄(sq,y)u51
12y31O(y4).

In summary, we have derived rigorous upper and low
bounds for the~exponent of the! ground state entropy of th
Potts antiferromagnet on the honeycomb and triangular
l

cs
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tices, and have shown that these are very restrictive for la
q. Since nonzero ground state entropy sheds light on som
the most fundamental properties of statistical mechanics,
of interest to derive similar bounds for other lattices; wo
on this is in progress.

Note added in proof.We have now succeeded in provin
an even more restrictive lower bound in the case of the h
eycomb lattice:W(hc,q) l5(q425q3110q2210q15)1/2/
(q21), whence W̄(hc,y) l5(11y5)1/2, which coincides
with the series for the exact functionW̄(hc,y) to a remark-
able eleven terms, i.e.,O(y10) @R. Shrock and S.-H. Tsai
Stony Brook Report No. ITP-SB-97-10~unpublished!#.
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