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Upper and lower bounds for the ground state entropy of antiferromagnetic Potts models
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We derive rigorous upper and lower bounds for the ground state entropy gfdtate Potts antiferromagnet
on the honeycomb and triangular lattices. These bounds are quite restrictive, especially for.large
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Nonzero ground state disorder and associated entropysiven this connection, we shall express our bounds on the
Sy#0, is an important subject in statistical mechanics; ag.s. entropySy(A,q) in terms of the equivalent function
physical realization is provided by ice, for whi&=0.82 W(A,q). As we discussed earli¢t1], the formal Eq.(1) is
+0.05 cal(K mole), i.e., Sy/kg=0.41+0.03[1,2]. Ground not, in general, adequate to defiffé(A,q) because of a
state(g.s) entropy may or may not be associated with frus-noncommutativity of limits
tration. An early example with frustration is the Ising
(equivalently,g=2 Pott$ antiferromagnet on the triangular lim lim P(A,q)™# lim lim P(A,q)™ 2
lattice [3]. However, g.s. entropy is also exhibited in the N=ea-0s a—gsN—e
simpler context of models without frustration, such as theat certain special pointg,. We denote the definitions based
g:garginlje?/%f)rigﬂgrlrggfgsn%r()in[ti ;?l\pog;hs? zr?ctiworﬁstﬂe on the first and second orders of limits in E@®) as
triangular (tri) lattice for q=4. Of these three two- W(_A_,q)an andW(A,q)p, , respectively. This noncommu-
dimensional2D) lattices,S, has been calculated exactly for ttivity can occur forg<qc(A), whereqc(A) denotes the
the triangular casd7], but, aside from the single value Maximal(finite) real value ofg, whereW(A,q) is nonana-
So(sa.9=3)/ks=()In(%) [8], not for the square or honey- Iytic [11]. Slnceqc(hc)z(_3+ J5)/2=2.618.., andqg(tri)
comb lattices. Therefore, it is valuable to have rigorous up=4 [@nd gc(sq)=3] [11], it follows that for the ranges of
per and lower bounds on this quantity. Using a “coloring @ considered here, viz(rea) g=3 for A=hc and sq, and
matrix” method, Biggs derived such bounds for the squared=4 for A=tri, one does not encounter the noncommuta-
lattice [9]. Here we shall extend his method to derive analo-tivity (2).
gous bounds for the honeycomb lattice, and compare the TO proceed, we consider a sequencérefulay mxn 2D
results with our recent Monte Carlo measuremda®,11] lattices of type A, with periodic boundary conditions
and with largeq series[12]. We also derive such bounds for (PBC’S) in both directions, anch andn even to maintain the
the triangular lattice; the interest in this case is that thedipartite property for finite square and honeycomb lattices,
bounds can be compared with the exact result of Bxter ~and thereby avoid frustration. Fdr=sq, Biggs introduced

We make use of the fact that the partition functionTat the notion of a coloring matrif, somewhat analogous to the
=0, Z(A,q,K=—), for theq-state zero-field Potts AF on transfer matrix for statistical mechanical spin models. The
a lattice A [whereK=BJ, B=1/(kgT), andJ<O0 denotes construction ofT begins by considering an-vertex circuit
the spin-spin couplingis equal to the chromatic polynomial Cn a@long a column ofA, i.e., a ring around the toroidal
P(A,q) HereP(G,q) is the number of ways of Co|o|’ing the lattice, given the PBC’s. The number of a."Oqu.:OloringS
graphG with q colors such that no adjacent vertiositeg ~ ©of this circuit is P(Cp,,q)=(q—1)[(q—1)""*+(-1)"].
have the same coldi3]. Define the reduced, per site free Now focus on two adjacent columnar circuis, andCy,.
energy for the Potts AF in the thermodynamic limit as Define compatibleg colorings of these adjacent circuits as
f(A,q,K)=limy_.N"tIn Z(A,g,K). From the general rela- colorings such that no two horizontally adjacent vertices on
tion between the entrop$, the internal energy, and the the circuits have the same color. One can then associate with
reduced free energB=pBU+f (henceforth we use units this pair of adjacent columnar circuits an\VXN-
such that ky=1), together with the property that dimensional symmetric matrixT, where N=P(C,,q)
lim¢_._..BU(B)=0, as is true of they-state Potts AF mod- =P(C;,,q) with entrieSTcn,chcé,cn:l or O if theq
els considered here, it follows tha(A,q)=f(A,q,K  colorings ofC, and C/, are or are not compatible, respec-
= —*)=InW(A,q), whereW(A,q) is the asymptotic limit  tiyely. Then for fixedm,n, P(Amxn,q)=Tr(T™). For a

givenn, sinceT is a hon-negative matrix, one can apply the
) N Perron-Frobenius theoref4] to conclude thafl has a real
W(A,q)= lim P(A,q)™". (1) positive maximal eigenvaluk,,(0). Hence, for fixedh,

N—o

lim Tr(TMMmv_\20, &)
m— o
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W(A,q)= lim A | (4

n—o

Denote the column sum;(T)= EI 1Tij [equal to the row 4
sum p;(T)=3{L,T;; since T'=T] and S(T)= E,J 1Tij s
note thalS(T)//\ﬂs the average rovcolumn sum. Combin- 3
ing the bounds for a general non-negatiVéx A/ matrix A

[14], c

min{¥;(A)} <X mafA)<max yi(A)},

for Vi~ Kj or Pj, (5)

with the (k=1 case of thg more restrictive lower bound I T
applicable to a symmetric non-negative mafrb],

S(TY
N

1k
} <Amax for k=1,2,..., (6) —=>m
(@)

we have

S(T)
Tg)\mw&T)smax{Kj(T)}- (7

For the honeycomb lattice, we find that an analog of the
circuit C, on the square lattice is the set of vertical dimers 3
shown in Fig. 1a), which we denote ap. With m andn
even to maintain a bipartite lattice, there av dimers in

p, and the total number of colorings of these dimers is 2
th,nz[q(q—l)]”’z. We next associate thél matrix

T(hg,) with two adjacent sets of dimepsandp’ [see Fig. c

1(@]; T(hc,) is thus aNpcn X Npe, matrix. Twoq colorings 4 .

of the dimer setp andp’ are compatible if and only if the
horizontally adjacent vertices have different colors, and
T,pr=1 or 0, respectively, if these colorings are compatible
or incompatible. We observe th&T)=P(C,,,q). There-
fore,

S(T(he))  (@=D(q—1)*"*+1] - m

= (8 (b)
th,n [Q(q_l)]nlz
FIG. 1. (a) Honeycomb andb) triangular lattices. See text for
To calculate the maximal column sum, we consider twoOIISCUSSIOn

neighboring sets of dimers and p’, with n sites each la-
beled byi=0,1,...n—1 [see Fig. 1a)]. Let the sites of set

p be colored in such a way that sites on the same dimer have
different colors(choosing one such configuration of colors
corresponds to fixing one column in the color mafFix Let

X;- denote the number af colorings of sites =0 toi=]j of Xy<[(q—1)(q—2)+1]Xy_, for 2<2l<n—2,

p’, such that a sité in setp has a different color from a site (11)
i onp’. If j is odd, the coloring of théth site inp’ is only

constrained to be different from the coloring of the adjacenivhich  vyields Xy <[(q—1)(q—2)+1]'X,,  where
jth site inp, soX;=(q—1)X;_;. [16] The color assigned to X,=q— 1. It follows that

an evenj site inp’ must be different from the color @f) the

other member of the dimer ip’ and(ii) the adjacenjth site  X,_;=(q—1)X,_,=<(q—1)?[(q—1)(q—2)+1]"~ 22

in p; hence,X;=(q—2)X;_1+Y;_,, whereY;_, denotes (12)
the number of colorings for which siteof p has the same

color as sitej—1 of p’. Note thatY;_, is a subset of Because max;(T(hc,))}<X,_ 1, we obtain

Xj—2, i.e.,Y;_1=X;_,. Thus
max «(T(hc,)}=<(q—1)%q*—3q+3]"" 22 (13

Xj=(q—1)X;—, for odd j, 1sjsn-1. (10

Using Eq.(10) in Eqg. (9), and setting =2I, we have

Xj<(q—=2)Xj_1+Xj_, for evenj, 2<jsn-2,
(9 Hence, using Eq93) and(4), we derive the bounds
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TABLE I. Comparisons of lower and upper bounds with Monte Carlo measuremeni8(lof,q) and exact values oW(tri,q),
respectively, fog.(A)=<q=<10. An analogous comparison is included fo# sg. A conservative estimate of the uncertainty in the ratios for
the hc and sq lattices isAL0 %,

W(hC,q)| W(hC,q)u W(ng)l W(quq)u W(trlv q)l W(trlv q)u
q W(hc,a)mc W(hc,a)mc W(sq.) W(sq.) W(tri,q) W(tri,q)
3 0.983 73 1.043 40 0.974 25 1.050 91
4 0.997 81 1.016 12 0.998 44 1.033 05 0.912 62 1.1074 85
5 0.999 48 1.007 26 0.999 70 1.01593 0.993 77 1.066 30
6 0.999 78 1.003 77 0.999 92 1.008 51 0.998 79 1.030 87
7 0.999 88 1.002 20 0.999 96 1.004 98 0.999 63 1.016 28
8 0.999 99 1.001 45 0.999 96 1.003 12 0.999 86 1.009 53
9 1.000 01 1.000 99 0.999 95 1.002 06 0.999 94 1.006 02
10 0.999 94 1.000 63 0.999 86 1.001 34 0.999 97 1.004 04
(9- < 1/2 (q-2)? ; 1 2 1
T W(hc,q)<(g?—3q+3)2 for q=3 -1 <W(tri,q)<3[q—3+(g>—6q+13)'?]

(14

for q=q.(tri)=4. (18
The bounds are also seen to apply for the agse if one _ . )
uses as a definitiolV(hc,2=W(hc,2), =1 given by the L[FOr d=3, the ground state entropy is zero, ie,
. S nq W(tri,3)p =1.]
first order of limits in Eq.(2). ng ]

Similarly, for the triangular lattice we define the color  De€note the lower and upper bounds for these lattices as

matrix T(tri,) by considering the compatibility of color-  W(A.a); and W(A,q),, respectively. We observe that as
ings of two neighboringh-vertex circuitsC, and C/,. An g increases, these bounds rapidly approach each other, and
example of such adjacent circuits is shown by the darkeP€NCe restrict the exact valué§A,q) very accurately. This
lines in Fig. Ab). Here T(tri,) is & Ny XNy, matrix, can be seen as a consequence of the fact that, aside from the
whereNy; ,=P(C,,q)=P(C}/,q). For the triangular lattice obvious prefactog, W(A.,q), andW(A,q),, are the same up

—2y.
with periodic or open boundary conditions in the vertical t0 O(g™):

direction, S(T) is equal, respectively, to the numbers g W(he,q)=1-3q 1+ 2q 2+ &q 3+ 0(q %),
P(cctri,,q) and P(octri,,q) of g colorings of a cyclic (19
or open chain of triangles with r2 vertices. In the

n—o limit of interest here, lim_..P(cctri,,q)" q Whe,q),=1-3q '+ 3q 2+ %q 3+0(q %,
=lim,_...P(octri,,q)", so it does not matter which type of (20

chain we use. An elementary calculation yields . B _ _
and similarly with g~ ~W(tri,q),, b=1,u. (This was also

true for theA =sq boundg9]).

In Table I, we compare the bound$4) for A =hc with
our recent Monte Carlo measurements\éthc,q) [10,11.
We also compare our boun@ks) for A = tri with the exactly
i ) known results of Baxtdr7]. For reference, Table | includes a
lim [S(T(t”n))} :(q—2) (16) similar comparison of the\ =sq bound with the knowm

Niri.n g-1 ° =3 value[ 8], and Monte Carlo measuremeis,19,1] for

g>3. We see that ag increases pasi=4, the upper and
lower bounds bracket the actual respective values quite
closely, and that the latter values lie closer to the lower
bounds.

To understand why the actual valuesviéA ,q) lie closer
to the respective lower bounds, we compare the layge-
ries with the expansions of these lower bounds. For a lattice
A with coordination numbet, the largeq series can be
written in the form

P(octri,,0)=q(q—1)(q—2)?""2, (15

SO

n—oo

To calculate majq(T(trip))}, we derive, as before, an
upper bound forX, ;. Each vertex ofC; is connected to
two vertices ofC,,, hence each of th¥;_, colorings of the
sitesi=0 toi=j—1 of the circuitC,, can be extended in at
leastq—3 ways to the sitd=j. Thus, for the triangular
lattice, the equivalent of Eq$9) and (10) is

Xis(Q—3)X;_1+Xj_, 2<jsn—1, a7 o
W(A,q)=a(1—q~ H¥W(Ay), (21
with Xg=g—2 andX;<(g—3)(q—2)+1 [17]. This recur-
sion relation is of the same form as the one obtained prevNVhereW(A,y) 1+3,_,w,y" with y=1/(q—1). Defining
ously[9] for the square lattice, and can thus be solved by thehe analogous functiond/(A,y) via
same method. Thus, for the triangular lattice, we find the _
inequality WA, 9)p=0q(1—q HW(A,y),, b=Ilu, (22
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we obtainW(hc,y), =1, which agrees to the first five terms, tices, and have shown that these are very restrictive for large
ie., to orderO(y%), with the series[12] VV(hc y)=1 g. Since nonzero ground state entropy sheds light on some _of
5 10 1~ L s the most fundamental properties of statistical mechanics, it is
+y*2=y"I8+yt+O(y), while W(hcy)y=1+Y2  (tinterest to derive similar bounds for other lattices; work
+0(y®). We also calculateW(tri,y),=(1—y?)? which  on this is in progress.
agrees to the first five terms, i.e., @(y*4), with the series Note added in proofWe have now succeeded in proving
[12] W(tri,y)=1—2y?+y*+y°+0(y®), while W(tri,q), an even more restrictive lower bound in the case of the hon-
—1-2y2+2y3+O(y%). Finally, W(sqy),=1+y® which eycomb lattice:W(hc,q),= (9*— 5%3;210qu 10q +.5)1.’2/
agrees to the first seven terms, i.e.Q¢y®), with the series (a—1), whenceW(hcy),=(1+y”)"%, which coincides

_ 3,47 8 : _ with the series for the exact functioN(hc,y) to a remark-
[Jrlgyle% é\/((;%,y) Ly +y +0(y), while W(say)u=1 " jpie eleven terms, i.eQ(y'% [R. Shrock and S.-H. Tsai,

: . St Brook Report No. ITP-SB-97-1@npublished).
In summary, we have derived rigorous upper and lower ony Broo P Y@npublished

bounds for thgexponent of theground state entropy of the This research was supported in part by NSF Grant No.
Potts antiferromagnet on the honeycomb and triangular latPHY-93-09888.
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